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As demonstrated in the authors' previous work, damping matrices in the equation of
motion of a dynamics system can be identi"ed from the frequency response function matrix
(FRM) of the system. A newly developed method with a much simpler algorithm is proposed
in this paper for more e!ective damping matrices identi"cation. Theoretical validation of the
method and related noise study are conducted using a simple example, which reveals the
method's improved features. A set of specially designed measurements are conducted for
a qualitative, experimental validation of the identi"cation method. Important measurement
issues learned from the experiment, which include needs for phase matching and FRM
conditioning, are explained. Possible signi"cant applications of the method are also
discussed.

( 2001 Academic Press
1. INTRODUCTION

A viscous or structural damping model describes the energy loss mechanism in a vibrating
system in a simple mathematical form [1]. The modal damping or proportional damping
concept further uses an assumption that the spatial distribution of damping follows the
mode shape (modal damping) or the system geometry (proportional damping). Such
assumptions are obviously not always valid. For example, when a cantilever is assembled to
its base structure, a relatively large energy loss mechanism will exist along the interface. If
the damping distribution of such a structure is known in more detail, a more accurate stress
analysis of the structure will be possible, which will bene"t a high cycle fatigue (HCF)
analysis of the structure (e.g., a turbine blade). In a high-speed rotor system, di!erent
damping mechanisms have di!erent e!ects on the system stability [2}4]. Therefore, "nding
di!erent damping mechanisms in respective matrices will improve the quality of the
simulation model of such a system.

In most past works, the damping matrix of a structure has been identi"ed using FRFs
indirectly. Typically, modal parameters such as natural frequencies and modes are extracted
"rst, then the mass, sti!ness and damping matrices using those identi"ed parameters
[5}11]. Since damping matrices have a much smaller e!ect on the system responses
compared to the mass and sti!ness matrices, the damping matrices identi"ed in this manner
become inaccurate. In a typical experimental modal analysis [10, 11], detailed information
of the damping e!ect is usually not a main concern.

Over the past decade, extensive research activities have taken place in model updating, in
which the damping matrix is identi"ed as a part of the result. For example, an incremental
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least-squares method was used for the model updating by Dalenbring [12] and Lee et al.
[13]. The basic idea of model updating techniques is "nding a theoretical model whose
response matches best with the measured system response. The damping matrices are
identi"ed to match the system response of the experimental and theoretical models, but
their uniqueness is not guaranteed.

Tsuei et al. [14}16] developed a method that works directly on FRFs to "nd the damping
matrices as the primary objectives of identi"cation. In the authors' previous work [17],
a theoretical validation of the method and related noise study were conducted. The authors
also attempted an experimental validation of the technique [18], which was incomplete
because some necessary measurement techniques were not known at the time.

While the authors were working to conduct an experimental validation of the method
proposed by Tsuei, it was realized that a much simpler algorithm could be used.

The method uses a dynamic sti!ness matrix (DSM), or the inverse of FRM. The method is
very simple, requiring far fewer steps of numerical operations compared to the previously
used method. Owing to this simplicity, the identi"cation result is much less in#uenced by
the measurement errors and noises. A theoretical example is used to validate the algorithm
and demonstrate advantages of the new method over the previously used method. A set of
experimental measurements is devised and conducted to validate the practicality of the
method.

2. IDENTIFICATION THEORY

2.1. DEVELOPMENT OF THE THEORY

The equation of motion of an n-degree-of-freedom (d.o.f. ) dynamic system subjected to
a harmonic input force is

MxK#CxR #( jD#K)x"Fe +ut , (1)

where M, C, D and K are the mass, viscous damping, structural damping and sti!ness

matrices, respectively, j"J!1, and x (t) and f (t) are the displacement and force vectors.
Letting x (t)"X (u) e +ut, equation (1) becomes

[(K!Mu2)#j(uC#D)]X(u)"F (u). (2)

The dynamic sti!ness matrix (DSM) is de"ned as

[H(u)C]~1"(K!Mu2)#j(uC#D), (3)

where HC(u) is the frequency response matrix (FRM) de"ned as

HC(u)"[HC
ij
]"[X

i
/F

j
], i, j"1, 2, 3,2. (4)

In equation (4), the superscript C indicates that the variable is a complex quantity, and HC
ij

is
the frequency response function (FRF) measured between the nodes i and j. Because the
FRM is much easier to measure than the DSM, the DSM is obtained by inverting the
measured FRM.

If the DSM is available, equation (3) can be rewritten as

imag (HC (u)~1)"uC#D, real (HC(u)~1)"K!u2M, (5, 6)
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where imag and real stand for the imaginary and real parts respectively. For example,
imag (HC (u)~1) is the matrix composed of the imaginary part of the DSM matrix HC (u)~1.
Equations (5) and (6) can be put into

[I u] C
D

CD"imag (HC(u)~1), (7)

where I is an n]n identity matrix, and

[I !u2] C
K

MD"real (HC(u)~1). (8)

Therefore, the system damping matrices C and D can be found by a pseudo-inverse
procedure of equation (7) as

C
D

CD
2n]n

"

I u
1
I

I u
2
I

) )

) )

I u
k
I

`

kn]2n

imag (HC(u
1
)~1)

imag (HC(u
2
)~1)

)

)

imag (HC(u
k
)~1)

kn]n

, (9)

where # means the pseudo-inverse of the matrix. If necessary, the sti!ness and mass
matrices can also be found:

C
K

MD
2n]n

"

I !u2
1
I

I !u2
2
I

) )

) )

I !u2
k
I

`

kn]2n

real (HC (u
1
)~1)

real (HC (u
2
)~1)

)

)

real (HC(u
k
)~1)

kn]n

. (10)

Equations (9) and (10) have to be set up at least at two frequencies (k"2) to make the
equations solvable. Usually, the equations are over-determined by using more frequencies
than needed.

As was shown, the procedure itself is surprisingly simple, looking almost like an obvious
identity. However, the authors could not "nd any previous works that used this relationship
to "nd damping matrices. The procedure proposed by Tsuei et al. [14}16], which also "nds
the damping matrices from measured FRFs, may be compared to the proposed method. In
the method, C and D matrices are found by solving the following equation:

[uHN(u)HN(u)]C
C

DD"G(u), (11)

where HN(u) is the normal FRF, which is de"ned as

HN(u)"[K!Mu2]~1. (12)

The normal FRF is obtained as

HN(u)"HC
R
(u)#HC

I
(u)HC

R
(u)~1HC

I
(u), (13)
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where subscripts I and R stand for the imaginary and real parts, respectively, and HC
R
(u)~1

is the inverse of the real part of the FRM, i.e. (real (HC ))~1.
G(u) is de"ned as

G (u)"HC
I
(u)HC

R
(u)~1. (14)

The above method is obviously more involved. The objectives of the identi"cation, elements
of the damping matrices, have physically a small e!ect on the FRM, therefore each of these
extra steps ampli"es the e!ect of measurement errors or noises.

If only the viscous damping is used in the modelling, an equivalent viscous damping
matrix C

eq
, that represents the entire energy loss mechanism system, can be obtained by

solving

[C
eq

]
n]n

"

u
1
I

u
2
I

)

)

u
k
I

`

kn]n

imag (HC(u
1
)~1)

imag (HC(u
2
)~1)

)

)

imag (HC(u
k
)~1)

kn]n

. (15)

If only the structural damping is used in the model, an equivalent structural damping matrix
D

eq
can be obtained by solving

[D
eq
]
n]n

"

I

I

)

)

I

`

kn]n

imag (HC (u
1
)~1)

imag (HC (u
2
)~1)

)

)

imag (HC (u
k
)~1)

kn]n

. (16)

2.2. THEORETICAL VALIDATION OF THE IDENTIFICATION PROCEDURE

In the author's previous work, a 3-d.o.f. system shown in Figure 1 was used to validate
Tsuei's method and to study the noise e!ect on the identi"cation results [17]. In the
validation, 9 FRFs were obtained by solving the matrix equation of motion of the system,
which form the FRM. Assuming that this FRM contained the only known measurement
data, damping matrices were obtained by the procedure proposed by Tsuei. These matrices
were shown to be equal to the damping matrices of the equation of motion. The new
algorithm easily passes this test, which validates the identi"cation algorithm itself.

The e!ect of the measurement noise on the accuracy of the identi"cation was also studied
by the authors [17], in which the identi"cation procedure was applied after mixing various
levels of random noises to the FRFs. A part of the study is repeated here to compare the
proposed method with Tsuei's method. Table 1 compares the identi"ed results from the two
methods when 0)5% random noises are mixed in the FRFs for two cases, when the FRM is
conditioned and not conditioned. Conditioning FRM involves making the matrix
symmetric, to utilize the fact that the FRM is theoretically symmetric. Section 3.2.5 can be
referred to for the e!ect of this conditioning. The comparison shows that the result from the
new method is much less sensitive to the measurement noise, giving much better
identi"cation results. If the FRM is conditioned, the new method identi"es the matrices in



Figure 1. Three d.o.f. lumped parameter model.

TABLE 1

Comparison of the identi,cation methods: e+ect of noise on the identi,ed matrices

Estimation of damping matrices
From the simulation data with 0)5% noise

Estimation
method

Viscous damping [C] Structural damping [D]

Theoretical matrix 50 !30 0 250 !150 0
!30 55 !25 !150 350 !200

0 !25 25 0 !200 200

Tsuei's method 38)8 !19)1 !6)4 544)5 !431)4 148)3
(unconditioned) !15)7 39)4 !17)4 !608)3 816)9 !431)0

!13)2 !10)9 17)8 263)3 !475)0 337)3

New method 49)6 !29)3 1)3 254)0 !158)8 !21)3
(unconditioned) !30)6 52)3 !21)2 !141)9 387)3 !260)7

!0)1 !26)8 22)4 4)5 !175)9 239)1
Tsuei's method 45)0 !21)9 !1)1 374)5 !361)6 19)6
(conditioned) !23)7 42)5 !23)9 !361)7 716)0 !248)3

!6)3 !13)9 23)5 129)7 !418)8 236)3

New method 49)7 !30)0 0)6 253)4 !150)5 !9)2
(conditioned) !30)0 52)6 !24)0 !150)5 381)6 !218)5

0)6 !24)0 22)8 !9)2 !218)5 232)6
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symmetric forms, however the other method does not, which indicates that extra steps in the
latter deteriorate the accuracy.

3. EXPERIMENTAL VALIDATION OF IDENTIFICATION THEORY

The fact that an experimental identi"cation method is working in a theoretical problem is
meaningless unless it also works in real experimental cases. An experimental validation will
be necessary to prove the practicality of the method. However, the di$culty in this case was
"nding a dynamic system whose exact (or theoretical) damping matrices are known. If such
a system existed, the validation can be done in a much similar way as the theoretical



Figure 2. Experimental set-up: (a) clamped beam without a damper, (b) clamped beam with a damper.
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validation discussed in the previous section, comparing experimentally identi"ed damping
matrices with the theoretical matrices. Not knowing such a system, an indirect, partial
validation of the identi"cation method was devised.

Figure 2 shows two systems used in this experiment, a beam con"gured in two di!erent
ways. The system shown in Figure 2(a) is a uniform width beam whose ends are clamped.
The system in Figure 2(b) is obtained by attaching a viscous damper to the beam shown in
Figure 2(a). Four nodal points are used to de"ne the system as shown in Figure 3, which
means that the damping matrices will be identi"ed as 4]4 matrices. The viscous damper in
the latter system was attached between the nodes 3 and 4 as shown in the "gure.
Accelerations are measured at four nodal points, which are integrated twice to formulate the
FRFs in terms of compliances. The multi-reference-impact-testing (MRIT) scheme [19] was
used to obtain the FRFs. Roving the excitation to each nodal point, 16 FRFs are obtained,
which comprise a 4]4 FRM. The FRM is inverted to obtain the DSM.

3.1. STRATEGY FOR EXPERIMENTAL VALIDATION

The validation strategy is, essentially, to observe whether the identi"ed damping matrices
properly re#ect the underlying physics and the con"gurations of the two models, especially
if the following facts are observed. (a) The diagonal elements of the damping matrices are
positive. (2) The system with the damper (Figure 2(b) shows larger damping matrices,
especially the viscous damping matrix, than the system without a damper. (3) The elements
of the damping matrices of the system with a damper corresponding to nodes 3 and 4 are
relatively large.

Satisfying the above conditions is only a partial validation of the identi"cation theory by
itself. However, because the identi"cation algorithm itself was validated theoretically, this
partial validation is considered enough from a practical standpoint.

Besides the above three conditions, one may be tempted to use the symmetry of the
damping matrices as another observation point. Damping matrices will be identi"ed in
symmetric forms if the FRM is symmetric. The FRM, which is theoretically a symmetric
matrix, is measured as being slightly non-symmetric. This deviation from the symmetry can
be considered the re#ection of the quality of the measurement. Therefore, the symmetry of
the damping matrices may be useful to evaluate the quality of the measurement but not the
quality of the identi"cation. Even for that purpose, using the FRM will be a better option.
The FRM may be conditioned to a symmetric form, which seems to improve the
identi"cation result signi"cantly as will be explained in section 3.2.5.



Figure 3. Test set-up: (a) schematic diagram, (b) geometry.
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3.2. NECESSARY MEASUREMENT AND SIGNAL PROCESSING ISSUES

Several measurement and signal processing issues, some of which are not important in
a conventional modal analysis, were realized to be critical in damping matrices
identi"cation after many trials and errors during the experiment. These technical issues will
be explained one by one.

3.2.1. D.o.f.s of the experimental model

The dimension of damping matrices to be identi"ed is determined by the d.o.f.s of the
experimental model. For example, if FRFs are measured at four nodes as shown in Figure 3,
the matrices are identi"ed as 4]4 matrices. Using more d.o.f.s would provide better spatial
resolution of the damping information, however, at the cost of increased experimental e!ort.
Also, more parameters (elements of damping matrices) to be found will require higher



Figure 4. Implication of identifying damping in the viscous and structural damping matrices.
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accuracy in the measurement. d.o.f.s of the experimental model will have to be determined
considering the necessary spatial resolution and practical limitations.

3.2.2. Selection of frequency range

Modelling the system equation using C and D matrices implies that the damping force is
modelled as a linear function of frequency. As Figure 4 illustrates, the identi"cation process
can be considered as trying to "nd a best "tting straight line from scattered experimental
data points representing the damping force. From the "gure, it is easy to see that the matrix
D will be found more accurately if the FRM data are taken from the low-frequency range to
form the identi"cation equation (equation (9)). However, accelerometers generally have
poor accuracy in the low-frequency range, which is further deteriorated when integrating
acceleration to displacement. Figure 5 is one of the measured FRFs, which shows that the
data below 50 Hz are not accurate.

The damping e!ect on the system response is more pronounced around the resonance
frequency (about 383 Hz in this case as seen in Figure 5). Therefore, the measured data have
e!ectively higher signal-to-noise ratios around the resonance frequency. This is why side
bands (frequency ranges between half power points) have been used in damping
identi"cations. Considering these facts, the frequency range was chosen as follows in this
work. (1) Data below 50 Hz are discarded. (2) The low-frequency range is de"ned as
50}200 Hz. Using data from this range is expected to provide a more accurate D matrix.
(3) The side band was observed as 378}389 Hz for the undamped beam and 374}421 Hz for
the damped beam. As a compromise (and also needing over-determination of the
identi"cation equation), the side band in this experiment is de"ned as the range 350}440 Hz.
The use of this band is expected to provide a more accurate C matrix.



Figure 5. A typical FRF in Bode plot.

Figure 6. Illustration to explain the mistake to combine C and D matrices identi"ed using di!erent bands:
} ) } )} ) }, identi"ed using low band; } } } } , identi"ed using side band; **, combined model.
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Using the frequency range of interest of the particular problem may also be an option,
especially in practical situations.

One may be tempted to combine the C matrix identi"ed by using the side band and the
D matrix identi"ed using the low frequency band. Figure 6 illustrates the problem in this
approach, which will overestimate or underestimate the damping force.



Figure 7. Phase correction of FRF: **, before correction; } } } } , after correction.
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3.2.3. Sign convention of FRFs

The sign convention of FRFs is not important in a typical modal analysis as long as it is
used consistently. In other words, consistent use of either !X/F or X/F would not cause
any problem in "nding natural frequencies and mode shapes. However, in the identi"cation
procedure explained in section 2.1, using !X/F will reverse the sign of the matrices to be
identi"ed. Especially, mixed use of sign conventions will make the identi"cation result
invalid. The problem can be avoided by making the acceleration and excitation directions
the same at all measurement points. For a point where this is not possible, the phase angle
of the corresponding FRF has to be corrected numerically. In practice, it will be prudent to
check all FRFs and make sure that they all start with zero phase angle at the low-frequency
range by adding or subtracting 1803 if necessary. Figure 7 shows such a correction that we
made for one of the measured FRFs.

3.2.4. Phase matching between the force and motion transducers

Because the identi"cation uses the imaginary part of the DSM, the FRFs have to be
obtained with accurate phase angle, which requires an accurate phase matching between the
force and motion transducers. Initially the importance of the phase matching was not
realized because it seldom becomes an important issue in conventional modal testing. This
problem can be best explained by a single d.o.f. example shown in Figure 8. The FRF of the
system is

H(u)"
X

F
"

(K!u2M)!j (uC#D)

(K!u2M)2#(uC#D)2
. (17)

Figure 9 shows the Argand plot [1] of this FRF. As the frequency increases, the plot starts
from 1/K in the real axis and crosses the imaginary axis at point P, whose co-ordinate,
!1/(uC#D), is used to "nd the equivalent viscous damping C

eq
"uC#D.



Figure 8. Single d.o.f. system.

Figure 9. Illustration of damping identi"cation using the Argand plot.
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Now, suppose that there is a phase angle error of / radian between the force and
displacement signals. The FRF will be measured as

H(u)"
(K!u2M)!j(uC#D)

(K!u2M)2#(uC#D)2
e+(

:

(K!u2M)#/(uC#D)#j[(K!u2M)/!(uC#D)]

(K!u2M)2#(uC#D)2
. (18)



Figure 10. Errors in identi"ed damping as a function of the phase error; } } }} , exact value; **, identi"ed
value: (a) viscous damping C; (b) structural damping D.
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The Argand curve crosses the imaginary axis when the real part becomes zero, therefore

K!u2M"!/ (uC#D). (19)

By substituting this into equation (18), it is realized that the co-ordinate of this point
remains the same because

H (u)"
!(1#/2)(uC#D)

(1#/2)(uC#D)2
"!

1

(uC#D)
. (20)

Therefore, it is seen that the phase mismatch would not a!ect the damping parameter in this
method.

To see the e!ect of the phase mismatch on the damping matrices identi"ed by the
proposed method, let the parameters M, K, C and D of the system in Figure 8 be 10 Kg,
5000 N/m, 20 N s/m and 250 N/m respectively. Then the proposed method (equation (9)) is
applied to "nd C, D, M and K for various phase mismatches (/ rad). Figure 10(a) and (b)
shows the errors in the identi"ed C and D matrices as functions of the phase angle error in
percentage, i.e., error/exact value]100. Figure 11(a}c) represents the errors in the identi"ed
M, K, and the natural frequency. As is shown, the phase mismatch causes much larger
errors in C and D compared to other modal parameters.

Figure 12 shows the phase angle between the signals from the force transducer and one of
the accelerometers using the ratio calibration set-up [19]. The phase mismatch in Figure 12
is compensated numerically at each frequency to correct 4 FRFs obtained from this set of
accelerometers and force transducers. All 16 FRFs are reconstructed in this way before they
are used to identify the damping matrices.

3.2.5. Conditioning of the FRM

An FRM (or DSM) is always measured as slightly non-symmetric, while it is theoretically
symmetric. The FRM can be made symmetric by averaging two FRFs, using (H

ij
#H

ji
)/2

for both H
ij

and H
ji
. It was found that this conditioning not only makes the identi"ed

matrices symmetric but also improves the quality of the identi"cation results, perhaps
because of the averaging e!ect. Interestingly, this conditioning did not work well with
Tsuei's method. The method identi"es non-symmetric damping matrices despite using



Figure 11. Errors in other identi"ed structural parameters as a function of the phase error: } } } } , exact value;
**, identi"ed value; (a) mass M, (b) sti!ness K, (c) natural frequency u

n
.

Figure 12. Phase mismatch found from the calibration.
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TABLE 2

Summary of experimental comparisons

Table No. Frequency range (Hz) Phase match FRM conditioning

(a) Summary of ¹ables 3}9

3 350}440 (side band) No No
4 350}440 (side band) Yes No
5 350}440 (side band) Yes Yes
6 50}200 (low band) Yes Yes
7 50}120 (low band) Yes Yes
8 300}480 Yes Yes
9 50}800 Yes Yes

(b) Purposes of comparisons

Comparison E!ect to discuss

Table 3 versus Table 4 Phase matching
Table 4 versus Table 5 FRM conditioning
Table 5 versus Table 6 Low frequency versus side band
Table 6 versus Table 7, Table 5 versus Table 8 General frequency dependence
Table 9 versus Table 5, Table 9 versus Table 6 Wide range versus low range versus high range
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a conditioned FRM, which may have been caused by the accumulation of numerical errors
due to the extra steps of the method.

4. EXPERIMENTAL RESULTS

Table 2 summarizes all the subsequent tables, how they were obtained and compared to
one another. For example, the table shows that the damping matrices in Table 3 were
identi"ed using the FRM neither phase matched nor conditioned and using the side band
(350 and 440 Hz). Table 2(b) summarizes the purposes of the comparisons made. All tables
show the damping matrices in the same format, listing C, D, C

eq
and D

eq
matrices for two

systems. Generally, the di!erent con"gurations of the two systems are re#ected reasonably
well in all cases. For example, damping matrices of the system with a damper have larger
damping matrices in all tables.

The e!ect of the phase matching can be seen by comparing Tables 3 and 4, and the e!ect
of the FRM conditioning can be seen by comparing Tables 4 and 5. Phase matching
improves the result in general, especially judging from the equivalent matrices identi"ed,
whose diagonal elements become nearly all positive in Table 4 as the phase is matched.
Comparing Tables 4 and 5 shows that the e!ect of the FRM conditioning improves the
identi"cation results in an overall sense from the three observation points of view described
in section 3.1. It is believed that the averaging e!ect of the FRM conditioning improves the
result in addition to the obvious e!ect of making the matrices symmetric.

By comparing Tables 5 and 6, it can be seen that the structural damping matrix obtained
is of higher quality if the lower frequency band data are used. Substantially di!erent matrices
are obtained depending on whether the side band or the low band is used. This indicates
that the actual damping mechanism of the system is not a linear function but a higher order



TABLE 3

Damping matrices identi,ed using side band (350}440 Hz), neither phase matched nor FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
1)1318 !1)6250 0)8173 0)6457 !0)8416 !0)6190 1)5215 1)8753

!0)5126 0)6619 !0)5434 0)7226 !0)1760 1)1703 !2)8448 0)5616
!0)0070 0)3994 !0)2157 !1)0081 1)4290 !1)2683 2)5515 !3)9828

0)2272 !1)2311 1)2964 !0)2292 !1)2553 0)3481 !1)7293 4)7676

[D] (]107 N/m)
!0)1858 0)4982 !0)4772 0)2173 0)4681 0)0902 !0)4990 !0)7435

0)2111 !0)2418 0)1912 !0)1926 0)0600 !0)4265 0)9336 0)2835
!0)1659 !0)0894 0)2885 !0)3181 !0)5578 0)5076 !0)7204 0)3502

0)1436 0)3649 !0)7875 1)1489 0)5668 !0)2258 0)4032 !0)2739

[C]
eq

(]103 Ns/m)
0)5911 !0)1749 !0)5715 1)2781 0)4078 !0)3781 0)1897 !0)1092
0)1017 !0)0419 0)0131 0)1620 !0)0157 0)0319 !0)3530 1)3183

!0)4898 0)1393 0)6240 !1)9338 !0)0598 0)0865 0)6288 !3)0479
0)6450 !0)1690 !0)9954 3)1146 0)2576 !0)2546 !0)6531 4)0364

[D]
eq

(]107 N/m)
0)1876 !0)0378 !0)2076 0)4303 0)1674 !0)1295 0)0411 !0)0778
0)0420 !0)0235 0)0119 0)0458 !0)0024 !0)0111 !0)0763 0)4829

!0)1682 0)0424 0)2174 !0)6506 !0)0506 0)0574 0)1854 !1)0636
0)2185 !0)0412 !0)3598 1)0733 0)1212 !0)1022 !0)2107 1)4185

TABLE 4

Damping matrices identi,ed using side band (350}440 Hz), phase matched but not FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
1)2635 !1)7413 0)8112 0)6855 !0)5608 !0)9803 1)6949 1)7637

!0)5573 0)7724 !0)6528 0)8460 !0)3672 1)5027 !3)1251 0)8403
!0)0603 0)3219 !0)0627 !1)3295 1)4531 !1)4925 2)8084 !4)4144

0)2751 !1)2152 1)1389 0)1514 !1)2022 0)3792 !1)9071 5)1599

[D] (]107 N/m)
!0)2276 0)5288 !0)4740 0)2080 0)3758 !0)4588 0)2367 !0)1534

0)2235 !0)2707 0)2198 !0)2235 !0)0413 0)1057 !0)4282 1)4173
!0)1476 !0)0690 0)2471 !0)2400 !0)0574 0)0347 0)6983 !3)2005

0)1278 0)3609 !0)7443 1)0581 0)2656 !0)2455 !0)7016 4)1811

[C]
eq

(]103 Ns/m)
0)6012 !0)2023 !0)5683 1)2909 0)4421 !0)4588 0)2367 !0)1534
0)0930 !0)0156 0)0132 0)1954 !0)0413 0)1057 !0)4282 1)4173

!0)4898 0)1209 0)6566 !2)0278 !0)0574 0)0347 0)6983 !3)2005
0)6472 !0)1649 !1)0274 3)2310 0)2656 !0)2455 !0)7016 4)1811

[D]
eq

(]107 N/m)
0)1892 !0)0456 !0)2064 0)4341 0)1767 !0)1526 0)0553 !0)0922
0)0396 !0)0160 0)0044 0)0555 !0)0082 0)0100 !0)0989 0)5145

!0)1675 0)0371 0)2264 !0)6785 !0)0501 0)0424 0)2064 !1)1123
0)2186 !0)0400 !0)3687 1)1081 0)1232 !0)0995 !0)2253 1)4650
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TABLE 5

Damping matrices identi,ed using side band (350}440 Hz), phase matched and FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
4)4470 !1)1606 !1)2195 0)1236 3)7244 !2)9250 !2)1366 8)8274

!1)1606 0)8093 0)0355 !0)8394 !2)9250 3)6654 !0)6137 !5)7900
!1)2195 0)0355 1)0391 !1)1003 !2)1366 !0)6137 2)3144 !1)5113

0)1236 !0)8394 !1)1003 4)6854 8)8274 !5)7900 !1)5113 7.0014

[D] (]107 N/m)
!1)3414 0)3753 0)1559 0)5187 !1)1006 0)9069 0)6684 !2)8563

0)3753 !0)2731 0)0199 0)2401 0)9069 !1)2101 0)1545 2)1703
0)1559 0)0199 !0)0159 !0)3262 0)6684 0)1545 !0)2671 !0)5605
0)5187 0)2401 !0)3262 !0)2728 !2)8563 2)1703 !0)5905 !0)2532

[C]
eq

(]103 Ns/m)
0)5431 !0)0684 !0)7658 1)6333 0)7872 !0)5047 !0)3527 1)2044

!0)0684 0)0144 0)0934 !0)1407 !0)5047 0)4358 !0)2015 0)0022
!0)7658 0)0934 0)9928 !2)0496 !0)3527 !0)2015 1)6015 !3)0873

1)6333 !0)1407 !2)0496 3)8914 1)2044 0)0022 !3)0873 6)3257

[D]
eq

(]107 N/m)
0)1256 !0)0076 !0)2464 0)5595 0)2216 !0)1356 !0)0901 0)2774

!0)0076 !0)0062 0)0316 !0)0368 !0)1315 0)0911 !0)0634 0)1149
!0)2464 0)0316 0)3269 !0)6891 !0)0901 !0)0634 0)5545 !1)1270

0)5595 !0)0368 !0)6891 1)2727 0)2774 0)1149 !1)1270 2)2323

TABLE 6

Damping matrices identi,ed using low band (50}200 Hz), phase matched and FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
0)0145 !0)0137 !0)0004 0)0288 0)0020 0)0021 !0)0045 0)0063

!0)0137 0)0160 !0)0073 !0)0036 0)0021 !0)0054 0)0047 !0)0005
!0)0004 !0)0073 0)0259 !0)0475 !0)0045 0)0047 0)0011 !0)0116

0)0288 !0)0036 !0)0475 0)0999 0)0063 !0)0005 !0)0116 0.0276

[D] (]107 N/m)
0)3286 !0)1718 !0)0366 0)0348 0)4302 !0)3631 0)2830 !0)2731

!0)1718 0)2560 !0)2221 0)0836 !0)3631 0)4231 !0)4152 0)3087
!0)0366 !0)2221 0)2288 !0)1070 0)2803 !0)4152 0)4436 !0)3237

0)0348 0)0836 !0)1070 0)2799 !0)2731 0)3087 !0)3237 0)3816

[C]
eq

(]103 Ns/m)
3)7456 !1)9648 !0)4160 0)4240 4)8866 !4)1207 3)2087 !3)0947

!1)9648 2)9224 !2)5287 0)9461 !4)1207 4)7976 !4)7092 3)5047
!0)4160 !2)5287 2)6242 !1)2622 3)2087 !4)7092 5)0379 !3)6867

0)4240 0)9461 !1)2622 3)2776 !3)0947 3)5047 !3)6867 4)3606

[D]
eq

(]107 N/m)
0)3298 !0)1729 !0)0366 0)0370 0)4304 !0)3630 0)2827 !0)2726

!0)1729 0)2572 !0)2226 0)0833 !0)3630 0)4226 !0)4148 0)3087
!0)0366 !0)2226 0)2309 !0)1107 0)2827 !0)4148 0)4437 !0)3246

0)0370 0)0833 !0)1107 0)2877 !0)2726 0)3087 !0)3246 0)3838
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TABLE 7

Damping matrices identi,ed using a di+erent low band (50}120 Hz), phase matched and FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
0)0160 !0)0151 !0)0004 0)0316 0)0020 0)0023 !0)0050 0)0069

!0)0151 0)0176 !0)0081 !0)0040 0)0023 !0)0060 0)0052 !0)0006
!0)0004 !0)0081 0)0285 !0)0519 !0)0050 0)0052 0)0012 !0)0127

0)0316 !0)0040 !0)0519 0)1091 0)0069 !0)0006 !0)0127 0.0303

[D] (]107 N/m)
0)3285 !0)1718 !0)0366 0)0346 0)4302 !0)3631 0)2830 !0)2732

!0)1718 0)2559 !0)2220 0)0836 !0)3631 0)4231 !0)4152 0)3087
!0)0366 !0)2220 0)2287 !0)1067 0)2803 !0)4152 0)4436 !0)3236

0)0346 0)0836 !0)1067 0)2794 !0)2732 0)3087 !0)3236 0)3815

[C]
eq

(]103 Ns/m)
5)8306 !3)0552 !0)6483 0)6449 7)6161 !6)4245 5)0042 !4)8275

!3)0552 4)5465 !3)9377 1)4769 !6)4245 7)4816 !7)3432 5)4635
!0)6483 !3)9377 4)0762 !1)9411 5)0042 !7)3432 7)8524 !5)7404

0)6449 1)4769 !1)9411 5)0535 !4)8275 5)4635 !5)7404 6)7819

[D]
eq

(]107 N/m)
0)3294 !0)1726 !0)0366 0)0363 0)4303 !0)3630 0)2828 !0)2728

!0)1726 0)2568 !0)2225 0)0834 !0)3630 0)4228 !0)4150 0)3087
!0)0364 !0)2225 0)2302 !0)1095 0)2828 !0)4150 0)4437 !0)3243

0)0363 0)0834 !0)1095 0)2852 !0)2728 0)3087 !0)3243 0)3831
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function of frequency. For example, the small damper used in the experiment will be neither
viscous nor constant. Considering this, one may use the frequency band of interest to
identify the damping matrices. If the range is too wide, a piecewise linear model or
a non-linear damping model may have to be used. For the latter, the identi"cation method
will have to be modi"ed to include higher order terms.

Comparisons of Tables 6 and 7, and Tables 5 and 8 show that a small change in the
frequency range results also in small changes in the identi"ed matrices. This indicates that
the large di!erences between the results in Tables 5 (obtained using the side band) and
6 (obtained using the low band) were not caused by a numerical problem but by the nature
of the system.

Table 9 shows the identi"cation results obtained using a wide frequency range
(50}800 Hz), which includes both the side band and low band. Such a result may be used to
represent the system in an average sense for a wide frequency range of interest as an
alternative to a piecewise or non-linear model.

Another interesting observation is that while the beam without a damper has a symmetric
geometry, the identi"ed result does not re#ect the symmetry (e.g., D

11
is quite di!erent from

D
44

in Table 5). However, the geometric symmetry is better represented in the C matrix
when the side band is used (see Table 5), and in the D matrix when the low band is used (see
Table 6), which is consistent with the previous discussions. During our experiment, it was
observed that even a small distortion of the system results in substantially di!erent damping
matrices, which also do not show any geometric symmetry. This may be explained by the
fact that a variation of the geometry or clamping conditions, even if they are small, can
cause signi"cant changes in the energy loss mechanism. This feature may be exploited for



TABLE 8

Damping matrices identi,ed using a di+erent side band (300}480 Hz), phase matched and
FRM conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
3)3420 !1)0509 !0)8668 0)3595 3)1503 !2)3648 !2)1231 7)6908

!1)0509 0)7685 !0)0740 !0)5962 !2)3648 3)1607 !0)5468 !4)8655
!0)8668 !0)0740 0)9520 !0)8996 !2)1231 !0)5468 1)7178 !0)8123

0)3595 !0)5962 !0)8996 3)0084 7)6908 !4)8655 !0)8123 4.7971

[D] (]107 N/m)
!0)9383 0)3355 0)0267 0)4332 !0)9086 0)7243 0)6557 !2)4704

0)3355 !0)2587 0)0601 0)1513 0)7243 !1)0421 0)1324 1)8607
0)0267 0)0601 0)0157 !0)3995 0)6557 0)1324 !0)0820 !0)7967
0)4332 0)1513 !0)3995 0)3390 !2)4704 1)8607 !0)7967 0)4332

[C]
eq

(]103 Ns/m)
0)5395 !0)0486 !0)7869 1)6534 0)7059 !0)4162 !0)3593 1)0451

!0)0486 !0)0042 0)1057 !0)1442 !0)4162 0)3573 !0)1905 0)1401
!0)7869 0)1057 0)9992 !2)0930 !0)3593 !0)1905 1)4972 !2)9555

1)6534 !0)1442 !2)0930 4)0211 1)0451 0)1401 !2)9555 5)9626

[D]
eq

(]107 N/m)
0)1221 0)0021 !0)2483 0)5473 0)1998 !0)1077 !0)0914 0)2357
0)0021 !0)0149 0)0367 !0)0379 !0)1077 0)0700 !0)0599 0)1488

!0)2483 0)0367 0)3179 !0)6850 !0)0914 !0)0599 0)5224 !1)0825
0)5473 !0)0379 !0)6850 1)2936 0)2357 0)1488 !1)0825 2)1212

TABLE 9

Damping matrices identi,ed using wide band (50}800 Hz), phase matched and FRM
conditioned

Beam without a damper Beam with a damper

[C] (]103 Ns/m)
!4)435 4)433 !1)313 !3)273 !3)5075 0)2278 0)8480 !0)5235

4)433 !6)299 4)269 !0)269 0)2278 1)6700 !0)9352 !1)8994
!1)313 4)269 !5)396 5)293 0)8480 !0)9352 !0)4527 4)1053
!3)273 !0)269 5)293 !10)638 !0)5235 !1)8994 4)1053 !8.7964

[D] (]107 N/m)
1)7203 !1)6192 0)3256 1)5447 1)5154 !0)2711 !0)4127 0)6572

!1)6192 2)3095 !1)5800 0)1207 !0)2711 !0)3965 0)2042 0)7000
0)3256 !1)5800 2)3361 !2)6984 !0)4127 0)2042 0)8626 !2)7609
1)5447 0)1207 !2)6984 5)4880 0)6572 0)7000 !2)7609 5)8292

[C]
eq

(]103 Ns/m)
0)6770 !0)3787 !0)3454 1)3174 0)9957 !0)5779 !0)3783 1)4296

!0)3787 0)5641 !0)4263 0)0898 !0)5779 0)4916 !0)3285 0)1808
!0)3454 !0)4263 1)5462 !2)7253 !0)3783 !0)3285 2)1106 !4)0989

1)3174 0)0898 !2)7253 5)6706 1)4296 0)1808 !4)0989 8)5258

[D]
eq

(]107 N/m)
0)5360 !0)4355 !0)0250 0)6708 0)5788 !0)2103 !0)1862 0)5175

!0)4355 0)6275 !0)4401 0)0489 !0)2103 0)0494 !0)0456 0)1928
!0)0250 !0)4401 0)8953 !1)2849 !0)1862 !0)0456 0)7417 !1)6646

0)6708 0)0489 !1)2849 2)6474 0)5175 0)1928 !1)6646 3)4803
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a positive purpose. For example, identi"ed damping matrices may be used to inspect the
quality of the assembly of high-precision equipment.

5. SUMMARY AND CONCLUSION

A new algorithm was proposed for the experimental identi"cation of the damping
matrices, which identi"es the viscous and structural damping matrices of the equation of
motion of a dynamic system. The new algorithm is very simple, and therefore provides more
accurate and robust results compared to the method previously used [14]. Theoretical
validation of the method and the related noise study were conducted using a 3 d.o.f. lumped
parameter system. A set of measurements were taken, which served as a qualitative,
experimental validation of the procedure. Important measurement techniques necessary for
correct implementation of the proposed method learned from the experiment were also
reported, which included phase matching of FRFs, conditioning of the FRM and the
selection of the frequency range.

The method identi"es damping matrices, which carry a lot more information than
damping ratios; therefore it will enable some interesting applications. The following are
considered potentially promising applications.

(1) FEA-experiment hybrid modelling of a dynamic system: the mass and sti!ness matrices
are formulated theoretically, and the damping matrices are identi"ed experimentally,
which are then combined to obtain the system model. Because the actual spatial
distribution of the damping is considered in the model, this will provide a more accurate
analysis.

(2) Identi"ed damping matrices may be used as valuable information for design or
inspection. For example, comparison of the spatial distributions of damping of a new
design and an existing design may provide good insights to designers. Because even
a very small change in the system causes a signi"cant change in identi"ed damping
matrices, the matrices may also be used for an inspection purpose.

(3) The method will be very useful if it is extended and applied to modelling of rotor
systems. The ability of the method to distinguish di!erent damping mechanisms will be
very helpful in rotor systems, because di!erent damping mechanisms have di!erent
e!ects on the system stability.

The accuracy of the identi"ed damping matrices depends almost entirely on the accuracy of
the measured FRFs, especially their phase angles. Therefore, the techniques used to measure
FRFs will be critical to the feasibility of the above applications.
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