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As demonstrated in the authors’ previous work, damping matrices in the equation of
motion of a dynamics system can be identified from the frequency response function matrix
(FRM) of the system. A newly developed method with a much simpler algorithm is proposed
in this paper for more effective damping matrices identification. Theoretical validation of the
method and related noise study are conducted using a simple example, which reveals the
method’s improved features. A set of specially designed measurements are conducted for
a qualitative, experimental validation of the identification method. Important measurement
issues learned from the experiment, which include needs for phase matching and FRM
conditioning, are explained. Possible significant applications of the method are also
discussed.
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1. INTRODUCTION

A viscous or structural damping model describes the energy loss mechanism in a vibrating
system in a simple mathematical form [1]. The modal damping or proportional damping
concept further uses an assumption that the spatial distribution of damping follows the
mode shape (modal damping) or the system geometry (proportional damping). Such
assumptions are obviously not always valid. For example, when a cantilever is assembled to
its base structure, a relatively large energy loss mechanism will exist along the interface. If
the damping distribution of such a structure is known in more detail, a more accurate stress
analysis of the structure will be possible, which will benefit a high cycle fatigue (HCF)
analysis of the structure (e.g., a turbine blade). In a high-speed rotor system, different
damping mechanisms have different effects on the system stability [2-4]. Therefore, finding
different damping mechanisms in respective matrices will improve the quality of the
simulation model of such a system.

In most past works, the damping matrix of a structure has been identified using FRFs
indirectly. Typically, modal parameters such as natural frequencies and modes are extracted
first, then the mass, stiffness and damping matrices using those identified parameters
[5-11]. Since damping matrices have a much smaller effect on the system responses
compared to the mass and stiffness matrices, the damping matrices identified in this manner
become inaccurate. In a typical experimental modal analysis [ 10, 11], detailed information
of the damping effect is usually not a main concern.

Over the past decade, extensive research activities have taken place in model updating, in
which the damping matrix is identified as a part of the result. For example, an incremental

0022-460X/01/380505 4+ 20 $35.00/0 © 2001 Academic Press



506 J-H. LEE AND J. KIM

least-squares method was used for the model updating by Dalenbring [12] and Lee et al.
[13]. The basic idea of model updating techniques is finding a theoretical model whose
response matches best with the measured system response. The damping matrices are
identified to match the system response of the experimental and theoretical models, but
their uniqueness is not guaranteed.

Tsuei et al. [14-16] developed a method that works directly on FRFs to find the damping
matrices as the primary objectives of identification. In the authors’ previous work [17],
a theoretical validation of the method and related noise study were conducted. The authors
also attempted an experimental validation of the technique [18], which was incomplete
because some necessary measurement techniques were not known at the time.

While the authors were working to conduct an experimental validation of the method
proposed by Tsuei, it was realized that a much simpler algorithm could be used.

The method uses a dynamic stiffness matrix (DSM), or the inverse of FRM. The method is
very simple, requiring far fewer steps of numerical operations compared to the previously
used method. Owing to this simplicity, the identification result is much less influenced by
the measurement errors and noises. A theoretical example is used to validate the algorithm
and demonstrate advantages of the new method over the previously used method. A set of
experimental measurements is devised and conducted to validate the practicality of the
method.

2. IDENTIFICATION THEORY

2.1. DEVELOPMENT OF THE THEORY

The equation of motion of an n-degree-of-freedom (d.o.f.) dynamic system subjected to
a harmonic input force is

M3 + Cx + (jD + K)x = Fe i, 1

where M, C, D and K are the mass, viscous damping, structural damping and stiffness

matrices, respectively, j = ./ — 1, and x(t) and f(t) are the displacement and force vectors.
Letting x(¢) = X (w)ei®, equation (1) becomes

[(K — M®?) + j(@C + D)] X(w) = F(w). )
The dynamic stiffness matrix (DSM) is defined as

[H()] " =(K - Mo?) +j(wC + D), A3)
where HS(w) is the frequency response matrix (FRM) defined as

Hw) =[H{] =[X/F], i,j=123,... 4)

In equation (4), the superscript C indicates that the variable is a complex quantity, and H ,CJ is
the frequency response function (FRF) measured between the nodes i and j. Because the
FRM is much easier to measure than the DSM, the DSM is obtained by inverting the
measured FRM.

If the DSM is available, equation (3) can be rewritten as

imag (H ()™ ') = oC + D, real(HS(w)™ 1) = K — M, (5,6)
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where imag and real stand for the imaginary and real parts respectively. For example,
imag (H¢(w) ') is the matrix composed of the imaginary part of the DSM matrix H (w) 1.
Equations (5) and (6) can be put into

1o g |- imasrcio) G
where [ is an n x n identity matrix, and
[ — o7 [Alf[} = real (H (w) ™). (8)

Therefore, the system damping matrices C and D can be found by a pseudo-inverse
procedure of equation (7) as

+ — -

[T w,I ] imag(H (w,)™ ")
> I w,] imag(H(w,) ")
_1. . . , 9
|:C:|2n><n ( )
_I wkl - knx2n _imag (Hc(wk)il) knxn

where + means the pseudo-inverse of the matrix. If necessary, the stiffness and mass
matrices can also be found:

- -+

I —a?l [ real (HS(wy) ™) |
I —wil real (H (w,) ™ 1)

il | L

| real (H (o)™ ")

I —oil

L Jdknx2n dknxn

Equations (9) and (10) have to be set up at least at two frequencies (k = 2) to make the
equations solvable. Usually, the equations are over-determined by using more frequencies
than needed.

As was shown, the procedure itself is surprisingly simple, looking almost like an obvious
identity. However, the authors could not find any previous works that used this relationship
to find damping matrices. The procedure proposed by Tsuei et al. [14-16], which also finds
the damping matrices from measured FRFs, may be compared to the proposed method. In
the method, C and D matrices are found by solving the following equation:

C
[wH(w) H ()] [D] = G(w), (11)
where HY(w) is the normal FRF, which is defined as

HYw)=[K — Mw?]™ 1. (12)
The normal FRF is obtained as

H"(w) = Hi(0) + Hf (0)Hi(0) " 'Hf (o), (13)
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where subscripts I and R stand for the imaginary and real parts, respectively, and Hg(w) !
is the inverse of the real part of the FRM, i.e. (real (H¢))~ L.
G(w) is defined as

G(w) =Hf (0)Hg(0) . (14)

The above method is obviously more involved. The objectives of the identification, elements
of the damping matrices, have physically a small effect on the FRM, therefore each of these
extra steps amplifies the effect of measurement errors or noises.

If only the viscous damping is used in the modelling, an equivalent viscous damping
matrix C,,, that represents the entire energy loss mechanism system, can be obtained by
solving

- a9+

w1 [imag(H (w,)"Y) |
W, imag(H (w,)™Y)
[Ceq]nxn = ! : . (15)
_wkl Jdknxn _imag(Hc(wk)7 1) Jdknxn

If only the structural damping is used in the model, an equivalent structural damping matrix
D,, can be obtained by solving

(1] [imag(H @)Y ]
1 imag (H(w2) ")

[Deq]nxn =" ’ . (16)
_I dknxn —imag(Hc(wk)il) dknxn

2.2. THEORETICAL VALIDATION OF THE IDENTIFICATION PROCEDURE

In the author’s previous work, a 3-d.o.f. system shown in Figure 1 was used to validate
Tsuei’s method and to study the noise effect on the identification results [17]. In the
validation, 9 FRFs were obtained by solving the matrix equation of motion of the system,
which form the FRM. Assuming that this FRM contained the only known measurement
data, damping matrices were obtained by the procedure proposed by Tsuei. These matrices
were shown to be equal to the damping matrices of the equation of motion. The new
algorithm easily passes this test, which validates the identification algorithm itself.

The effect of the measurement noise on the accuracy of the identification was also studied
by the authors [17], in which the identification procedure was applied after mixing various
levels of random noises to the FRFs. A part of the study is repeated here to compare the
proposed method with Tsuei’s method. Table 1 compares the identified results from the two
methods when 0-5% random noises are mixed in the FRFs for two cases, when the FRM is
conditioned and not conditioned. Conditioning FRM involves making the matrix
symmetric, to utilize the fact that the FRM is theoretically symmetric. Section 3.2.5 can be
referred to for the effect of this conditioning. The comparison shows that the result from the
new method is much less sensitive to the measurement noise, giving much better
identification results. If the FRM is conditioned, the new method identifies the matrices in
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Figure 1. Three d.o.f. lumped parameter model.

TaBLE 1

Comparison of the identification methods: effect of noise on the identified matrices

Estimation of damping matrices
From the simulation data with 0-5% noise

Estimation Viscous damping [C] Structural damping [D]
method
Theoretical matrix 50 —30 0 250 — 150 0
—-30 55 —25 — 150 350 — 200
0 —25 25 0 — 200 200
Tsuei’s method 388 — 191 — 64 544-5 — 4314 1483
(unconditioned) — 157 394 — 174 — 6083 8169  —4310
— 132 — 109 17-8 2633 — 4750 3373
New method 49-6 —293 1-3 254-0 — 1588 —-213
(unconditioned) — 306 523 —212 — 1419 3873 —260-7
—01 — 268 22:4 45 — 1759 239-1
Tsuei’s method 450 — 219 —11 3745 — 3616 19-6
(conditioned) — 237 425  —239 — 3617 7160  — 2483
—63 — 139 235 129-7 — 4188 2363
New method 497 — 300 0-6 253-4 — 150-5 —-92
(conditioned) — 300 526  —240 — 1505 3816 — 2185
0-6 — 240 22-8 —-92 — 2185 232:6

symmetric forms, however the other method does not, which indicates that extra steps in the
latter deteriorate the accuracy.

3. EXPERIMENTAL VALIDATION OF IDENTIFICATION THEORY

The fact that an experimental identification method is working in a theoretical problem is
meaningless unless it also works in real experimental cases. An experimental validation will
be necessary to prove the practicality of the method. However, the difficulty in this case was
finding a dynamic system whose exact (or theoretical) damping matrices are known. If such
a system existed, the validation can be done in a much similar way as the theoretical
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Figure 2. Experimental set-up: (a) clamped beam without a damper, (b) clamped beam with a damper.

validation discussed in the previous section, comparing experimentally identified damping
matrices with the theoretical matrices. Not knowing such a system, an indirect, partial
validation of the identification method was devised.

Figure 2 shows two systems used in this experiment, a beam configured in two different
ways. The system shown in Figure 2(a) is a uniform width beam whose ends are clamped.
The system in Figure 2(b) is obtained by attaching a viscous damper to the beam shown in
Figure 2(a). Four nodal points are used to define the system as shown in Figure 3, which
means that the damping matrices will be identified as 4 x 4 matrices. The viscous damper in
the latter system was attached between the nodes 3 and 4 as shown in the figure.
Accelerations are measured at four nodal points, which are integrated twice to formulate the
FRFsin terms of compliances. The multi-reference-impact-testing (MRIT) scheme [ 19] was
used to obtain the FRFs. Roving the excitation to each nodal point, 16 FRFs are obtained,
which comprise a 4 x4 FRM. The FRM is inverted to obtain the DSM.

3.1. STRATEGY FOR EXPERIMENTAL VALIDATION

The validation strategy is, essentially, to observe whether the identified damping matrices
properly reflect the underlying physics and the configurations of the two models, especially
if the following facts are observed. (a) The diagonal elements of the damping matrices are
positive. (2) The system with the damper (Figure 2(b) shows larger damping matrices,
especially the viscous damping matrix, than the system without a damper. (3) The elements
of the damping matrices of the system with a damper corresponding to nodes 3 and 4 are
relatively large.

Satisfying the above conditions is only a partial validation of the identification theory by
itself. However, because the identification algorithm itself was validated theoretically, this
partial validation is considered enough from a practical standpoint.

Besides the above three conditions, one may be tempted to use the symmetry of the
damping matrices as another observation point. Damping matrices will be identified in
symmetric forms if the FRM is symmetric. The FRM, which is theoretically a symmetric
matrix, is measured as being slightly non-symmetric. This deviation from the symmetry can
be considered the reflection of the quality of the measurement. Therefore, the symmetry of
the damping matrices may be useful to evaluate the quality of the measurement but not the
quality of the identification. Even for that purpose, using the FRM will be a better option.
The FRM may be conditioned to a symmetric form, which seems to improve the
identification result significantly as will be explained in section 3.2.5.
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Figure 3. Test set-up: (a) schematic diagram, (b) geometry.

3.2. NECESSARY MEASUREMENT AND SIGNAL PROCESSING ISSUES

Several measurement and signal processing issues, some of which are not important in
a conventional modal analysis, were realized to be critical in damping matrices
identification after many trials and errors during the experiment. These technical issues will
be explained one by one.

3.2.1. D.ofs of the experimental model

The dimension of damping matrices to be identified is determined by the d.o.f.s of the
experimental model. For example, if FRFs are measured at four nodes as shown in Figure 3,
the matrices are identified as 4 x 4 matrices. Using more d.o.f.s would provide better spatial
resolution of the damping information, however, at the cost of increased experimental effort.
Also, more parameters (elements of damping matrices) to be found will require higher
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Figure 4. Implication of identifying damping in the viscous and structural damping matrices.

accuracy in the measurement. d.o.f.s of the experimental model will have to be determined
considering the necessary spatial resolution and practical limitations.

3.2.2. Selection of frequency range

Modelling the system equation using C and D matrices implies that the damping force is
modelled as a linear function of frequency. As Figure 4 illustrates, the identification process
can be considered as trying to find a best fitting straight line from scattered experimental
data points representing the damping force. From the figure, it is easy to see that the matrix
D will be found more accurately if the FRM data are taken from the low-frequency range to
form the identification equation (equation (9)). However, accelerometers generally have
poor accuracy in the low-frequency range, which is further deteriorated when integrating
acceleration to displacement. Figure 5 is one of the measured FRFs, which shows that the
data below 50 Hz are not accurate.

The damping effect on the system response is more pronounced around the resonance
frequency (about 383 Hz in this case as seen in Figure 5). Therefore, the measured data have
effectively higher signal-to-noise ratios around the resonance frequency. This is why side
bands (frequency ranges between half power points) have been used in damping
identifications. Considering these facts, the frequency range was chosen as follows in this
work. (1) Data below 50 Hz are discarded. (2) The low-frequency range is defined as
50-200 Hz. Using data from this range is expected to provide a more accurate D matrix.
(3) The side band was observed as 378-389 Hz for the undamped beam and 374-421 Hz for
the damped beam. As a compromise (and also needing over-determination of the
identification equation), the side band in this experiment is defined as the range 350-440 Hz.
The use of this band is expected to provide a more accurate C matrix.
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Figure 6. Illustration to explain the mistake to combine C and D matrices identified using different bands:
——————— , identified using low band; —--- -, identified using side band; ——, combined model.

Using the frequency range of interest of the particular problem may also be an option,
especially in practical situations.

One may be tempted to combine the C matrix identified by using the side band and the
D matrix identified using the low frequency band. Figure 6 illustrates the problem in this
approach, which will overestimate or underestimate the damping force.
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3.2.3. Sign convention of FRFs

The sign convention of FRFs is not important in a typical modal analysis as long as it is
used consistently. In other words, consistent use of either — X/F or X/F would not cause
any problem in finding natural frequencies and mode shapes. However, in the identification
procedure explained in section 2.1, using — X/F will reverse the sign of the matrices to be
identified. Especially, mixed use of sign conventions will make the identification result
invalid. The problem can be avoided by making the acceleration and excitation directions
the same at all measurement points. For a point where this is not possible, the phase angle
of the corresponding FRF has to be corrected numerically. In practice, it will be prudent to
check all FRFs and make sure that they all start with zero phase angle at the low-frequency
range by adding or subtracting 180° if necessary. Figure 7 shows such a correction that we
made for one of the measured FRFs.

3.2.4. Phase matching between the force and motion transducers

Because the identification uses the imaginary part of the DSM, the FRFs have to be
obtained with accurate phase angle, which requires an accurate phase matching between the
force and motion transducers. Initially the importance of the phase matching was not
realized because it seldom becomes an important issue in conventional modal testing. This
problem can be best explained by a single d.o.f. example shown in Figure 8. The FRF of the
system is

X (K—0*M)—j(C + D)
H) =T = (K — w*M)? 4 (wC + D)* a7

Figure 9 shows the Argand plot [1] of this FRF. As the frequency increases, the plot starts
from 1/K in the real axis and crosses the imaginary axis at point P, whose co-ordinate,
— 1/(wC + D), is used to find the equivalent viscous damping C,, = oC + D.
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Figure 8. Single d.o.f. system.
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Figure 9. Illustration of damping identification using the Argand plot.

Now, suppose that there is a phase angle error of ¢ radian between the force and
displacement signals. The FRF will be measured as

_ (K — M) — j(C + D)

i¢
(K — 0*M)* + (@C + D) ©

H(w)

_(K—a?M) + ¢(wC + D) +j[(K — ©*M)¢ — (wC + D)]

- (K — w*M)? + (wC + D)? ' (18)
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value: (a) viscous damping C; (b) structural damping D.

The Argand curve crosses the imaginary axis when the real part becomes zero, therefore
K — o*M = — ¢(wC + D). (19)

By substituting this into equation (18), it is realized that the co-ordinate of this point
remains the same because

_—(1+¢2)(wC+D)__ 1
HO) = 2 wc+DF ~  (@C+ D) 29

Therefore, it is seen that the phase mismatch would not affect the damping parameter in this
method.

To see the effect of the phase mismatch on the damping matrices identified by the
proposed method, let the parameters M, K, C and D of the system in Figure 8 be 10 Kg,
5000 N/m, 20 N's/m and 250 N/m respectively. Then the proposed method (equation (9)) is
applied to find C, D, M and K for various phase mismatches (¢ rad). Figure 10(a) and (b)
shows the errors in the identified C and D matrices as functions of the phase angle error in
percentage, i.e., error/exact value x 100. Figure 11(a—c) represents the errors in the identified
M, K, and the natural frequency. As is shown, the phase mismatch causes much larger
errors in C and D compared to other modal parameters.

Figure 12 shows the phase angle between the signals from the force transducer and one of
the accelerometers using the ratio calibration set-up [197]. The phase mismatch in Figure 12
is compensated numerically at each frequency to correct 4 FRFs obtained from this set of
accelerometers and force transducers. All 16 FRFs are reconstructed in this way before they
are used to identify the damping matrices.

3.2.5. Conditioning of the FRM

An FRM (or DSM) is always measured as slightly non-symmetric, while it is theoretically
symmetric. The FRM can be made symmetric by averaging two FRFs, using (H;; + H};)/2
for both H;; and Hj;. It was found that this conditioning not only makes the identified
matrices symmetric but also improves the quality of the identification results, perhaps
because of the averaging effect. Interestingly, this conditioning did not work well with
Tsuei’s method. The method identifies non-symmetric damping matrices despite using
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TABLE 2

Summary of experimental comparisons

Table No. Frequency range (Hz) Phase match FRM conditioning

(a) Summary of Tables 3-9

3 350-440 (side band) No No
4 350-440 (side band) Yes No
5 350-440 (side band) Yes Yes
6 50-200 (low band) Yes Yes
7 50-120 (low band) Yes Yes
8 300-480 Yes Yes
9 50-800 Yes Yes

(b) Purposes of comparisons

Comparison Effect to discuss

Table 3 versus Table 4 Phase matching

Table 4 versus Table 5 FRM conditioning

Table 5 versus Table 6 Low frequency versus side band

Table 6 versus Table 7, Table 5 versus Table 8 General frequency dependence
Table 9 versus Table 5, Table 9 versus Table 6 Wide range versus low range versus high range

a conditioned FRM, which may have been caused by the accumulation of numerical errors
due to the extra steps of the method.

4. EXPERIMENTAL RESULTS

Table 2 summarizes all the subsequent tables, how they were obtained and compared to
one another. For example, the table shows that the damping matrices in Table 3 were
identified using the FRM neither phase matched nor conditioned and using the side band
(350 and 440 Hz). Table 2(b) summarizes the purposes of the comparisons made. All tables
show the damping matrices in the same format, listing C, D, C,, and D,, matrices for two
systems. Generally, the different configurations of the two systems are reflected reasonably
well in all cases. For example, damping matrices of the system with a damper have larger
damping matrices in all tables.

The effect of the phase matching can be seen by comparing Tables 3 and 4, and the effect
of the FRM conditioning can be seen by comparing Tables 4 and 5. Phase matching
improves the result in general, especially judging from the equivalent matrices identified,
whose diagonal elements become nearly all positive in Table 4 as the phase is matched.
Comparing Tables 4 and 5 shows that the effect of the FRM conditioning improves the
identification results in an overall sense from the three observation points of view described
in section 3.1. It is believed that the averaging effect of the FRM conditioning improves the
result in addition to the obvious effect of making the matrices symmetric.

By comparing Tables 5 and 6, it can be seen that the structural damping matrix obtained
is of higher quality if the lower frequency band data are used. Substantially different matrices
are obtained depending on whether the side band or the low band is used. This indicates
that the actual damping mechanism of the system is not a linear function but a higher order
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TABLE 3

519

Damping matrices identified using side band (350-440 Hz), neither phase matched nor FRM
conditioned

Beam without a damper

Beam with a damper

[C] (x 10 N's/m)

1-1318 — 1:6250 0-8173 0-6457 — 08416 — 06190 1-5215 1-8753
— 05126 0-6619 — 0-5434 07226 — 01760 1-1703 — 2-8448 0-5616
— 0-0070 03994 — 02157 — 1-0081 14290  — 1-2683 2:5515 —3-9828
0-2272 — 12311 12964  —0-2292 — 12553 0-3481 — 1-7293 4-7676
[D] (x 107 N/m)
—0-1858 04982 — 04772 02173 0-4681 00902 — 04990 — 07435
02111 — 02418 0-1912 —0-1926 0-0600  — 0-4265 0-9336 0-2835
—0-1659 — 00894 02885 —0-3181 —0-5578 0-5076 — 0-7204 0-3502
0-1436 0-3649 — 0-7875 1-1489 05668  — 0-2258 04032 — 02739
[C]., (x 10® N's/m)
0-5911 — 01749 —0-5715 1-2781 04078 —0-3781 0-1897 —0-1092
0-1017 — 00419 0-0131 0-1620 —0-0157 0-0319 — 03530 1-3183
— 04898 0-1393 0-6240  — 19338 — 00598 0-0865 0-6288  — 30479
0-6450 — 01690 — 09954 3-1146 02576  — 02546 — 0-6531 4-0364
[D]., (x 107 N/m)
0-1876 — 00378 —0-2076 0-4303 0-1674  —0-1295 0-0411 — 00778
0-0420 —0-0235 0-0119 0-0458 — 00024 —0-0111 —0-0763 0-4829
— 01682 0-0424 02174  — 0-6506 — 00506 0-0574 0-1854  —1-0636
02185 — 00412 —0-3598 1-0733 01212 —0-1022 —0-2107 1-4185
TABLE 4

Damping matrices identified using side band (350-440 Hz), phase matched but not FRM
conditioned

Beam without a damper

Beam with a damper

12635
— 05573
— 0-0603
0-2751

— 02276
0-2235
— 0:1476
0-1278

0-6012
0-0930
— 0-4898
0-6472

0-1892
0-0396
— 01675
0-2186

— 17413
0-7724
0-3219

— 12152

0-5288
— 02707
— 0:0690
0-3609

—0-2023
— 00156

0-1209
— 01649

— 00456
— 00160

0-0371
— 0-0400

0-8112
— 06528
— 00627

1-1389

— 04740
02198
02471

— 07443

—0-5683
0-0132
0-:6566

— 10274

— 02064
0-0044
0-2264

— 03687

[C] (x 10 N's/m)

06855  —0-5608
08460  — 03672
— 13295 1-4531
01514  —12022
[D] (x 107 N/m)
0-2080 03758
—02235  —00413
— 02400  — 00574
1-0581 02656
[Cleq (x 10* N's/m)
1-2909 04421
01954  — 00413
— 20278  — 00574
32310 02656
[D]., (x 107 N/m)
04341 01767
00555  — 00082
— 06785  — 00501
1-1081 01232

— 09803
1-5027
— 1-4925
0-3792

— 0-4588
0-1057
0-0347

— 0-2455

— 0-4588
0-1057
0-0347

— 0-2455

— 01526
0-0100
0-0424

— 0:0995

1-:6949
— 31251
2-8084
— 19071

0-2367
— 0-4282
0-6983
— 07016

0-2367
— 0-4282
0-6983
— 0-7016

0-0553
— 0-0989
0-2064
— 02253

1-7637
0-8403
— 44144
5-1599

— 01534
1-4173
— 32005
41811

— 01534
1-4173
— 3-2005
41811

— 00922
0-5145
— 11123
1-4650
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TABLE 5
Damping matrices identified using side band (350-440 Hz), phase matched and FRM
conditioned
Beam without a damper Beam with a damper

[C] (x 10° N's/m)

4-4470 — 11606  — 1-2195 0-1236 3-7244 — 29250 —2-1366 8-8274
— 11606 0-8093 0-0355 —0-8394 — 29250 36654 — 06137 — 57900
— 12195 0-0355 1-0391 — 1-1003 — 2:1366 — 06137 2-:3144 — 1-5113

01236  —08394 — 11003 46854 88274  —57900 — 15113  7.0014

[D] (x 107 N/m)

— 1-3414 0-3753 0-1559 0-5187  — 1-1006 0-9069 06684 — 28563
0-3753 — 02731 0-0199 0-2401 09069 — 12101 0-1545 2:1703
0-1559 00199 — 00159 —0-3262 06684 0-1545 — 02671 — 05605
0-5187 02401 — 03262 — 02728 — 28563 2:1703  — 05905 —0-2532

[Cl., (x 10® N's/m)

0-5431 — 00684 — 0-7658 1-6333 07872 — 05047 — 0-3527 1-2044
— 0-0684 0-0144 00934 — 01407 —0-5047 04358 — 02015 0-0022
— 07658 0-0934 09928 —2:0496 — 0-3527 —0-2015 1-:6015 — 3-0873

1-6333 —0-1407 — 2-:0496 3-8914 1-2044 0-0022  — 3-0873 6:3257

[D]., (x 107 N/m)

0-1256 — 0-0076 — 0-2464 0-5595 0-2216 — 01356 — 0-0901 0-2774
— 0-0076 — 0-0062 00316 — 00368 —0-1315 00911  —0-0634 0-1149
— 0-2464 0-0316 0-3269 — 0-6891 — 0-0901 — 00634 0-5545 —1-1270

0-5595 — 00368 — 0-6891 1-2727 02774 0-1149 —1-1270 2:2323

TABLE 6
Damping matrices identified using low band (50-200 Hz), phase matched and FRM
conditioned
Beam without a damper Beam with a damper

[C] (x 10° N's/m)

00145  —00137 —00004 00288 0:0020 00021  —00045 00063
— 00137 00160 — 00073 — 0:0036 00021  — 00054 00047 — 0-0005
— 00004  — 00073 00259 — 00475 — 0:0045 00047 00011 — 0-0116

00288  —00036 —00475 00999 00063 —00005 —00116 00276

[D] (x 107 N/m)

03286  —01718 —00366 00348 04302 — 03631 02830 — 02731
— 01718 02560 —02221 00836 — 03631 04231  —04152 03087
— 00366  — 02221 02288 — 0-1070 02803 — 04152 04436 — 03237

0:0348 0083 —01070 02799 — 02731 03087  —03237 03816

[Cleq (x 10° N's/m)

37456  — 19648 — 04160 04240 48866 — 41207 32087 — 3-0947
— 19648 29224  — 25287 09461 — 41207 47976 — 47092  3-5047
— 04160  — 25287 26242 — 12622 32087  — 47092 50379 — 3-6867

04240 09461 — 12622 32776  — 30947 35047  — 36867 43606

[D]., (x 107 N/m)

03298  —01729 —00366 00370 04304 — 03630 02827 — 02726
— 01729 02572 —02226 00833 — 03630 04226  —04148 03087
— 00366  —02226 02309 — 01107 02827 — 04148 04437 — 0-3246

0-0370 0-0833 —0-1107 02877  —0-2726 0-3087 — 0:3246 0-3838
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TABLE 7

Damping matrices identified using a different low band (50-120 Hz), phase matched and FRM
conditioned

Beam without a damper Beam with a damper

[C] (x 10° N's/m)

0-0160 — 00151  —0-0004 0-0316 0-0020 0-0023 — 0-0050 0-0069
— 00151 00176  — 0-:0081 — 0-0040 00023  — 0-0060 0-0052 — 0-0006
— 0-0004 — 0-0081 0-0285 — 00519 — 0-0050 0-0052 0-0012 — 00127

0-0316 — 00040 — 0-0519 0-1091 0-0069  — 0-0006 — 00127 0.0303

[D] (x 107 N/m)

0-3285 — 01718 — 0-0366 0-0346 04302 —0-3631 02830 — 0-2732
— 01718 02559  —0-2220 00836 — 03631 04231 — 04152 0-3087
— 0-0366 — 02220 02287 — 0-1067 02803 — 04152 0-4436 — 0-3236

0-0346 00836 —0-1067 02794 — 02732 0-3087 —0-3236 0-3815

[Cl., (x 10® N's/m)

5-8306 — 30552 —0-6483 0-6449 7-6161  — 64245 50042 —4-8275
— 3-0552 4-5465  — 3-9377 14769  — 6:4245 7-4816 — 7-3432 54635
— 0-6483 — 39377 40762 — 19411 50042  —7-3432 7-8524 — 57404

0-6449 14769  — 19411 50535 —4-8275 5-4635 — 57404 67819

[D]., (x 107 N/m)

0-3294 — 01726  — 0-0366 0-0363 0-4303 —0-3630 02828 — 02728
— 01726 02568  —0-2225 00834 — 03630 04228 — 04150 0-3087
— 0-0364 —0-2225 0-2302 —0-1095 0-2828 — 04150 04437 —0-3243

0-0363 00834  —0-1095 02852  —0-2728 0-3087 — 03243 0-3831

function of frequency. For example, the small damper used in the experiment will be neither
viscous nor constant. Considering this, one may use the frequency band of interest to
identify the damping matrices. If the range is too wide, a piecewise linear model or
a non-linear damping model may have to be used. For the latter, the identification method
will have to be modified to include higher order terms.

Comparisons of Tables 6 and 7, and Tables 5 and 8 show that a small change in the
frequency range results also in small changes in the identified matrices. This indicates that
the large differences between the results in Tables 5 (obtained using the side band) and
6 (obtained using the low band) were not caused by a numerical problem but by the nature
of the system.

Table 9 shows the identification results obtained using a wide frequency range
(50-800 Hz), which includes both the side band and low band. Such a result may be used to
represent the system in an average sense for a wide frequency range of interest as an
alternative to a piecewise or non-linear model.

Another interesting observation is that while the beam without a damper has a symmetric
geometry, the identified result does not reflect the symmetry (e.g., Dy, is quite different from
D,, in Table 5). However, the geometric symmetry is better represented in the C matrix
when the side band is used (see Table 5), and in the D matrix when the low band is used (see
Table 6), which is consistent with the previous discussions. During our experiment, it was
observed that even a small distortion of the system results in substantially different damping
matrices, which also do not show any geometric symmetry. This may be explained by the
fact that a variation of the geometry or clamping conditions, even if they are small, can
cause significant changes in the energy loss mechanism. This feature may be exploited for
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TABLE 8

Damping matrices identified using a different side band (300-480 Hz), phase matched and
FRM conditioned

Beam without a damper Beam with a damper

[C] (x 10° N's/m)

3-3420 — 1-0509 — 0-8668 0-3595 3-1503 — 23648 — 21231 7-6908
— 10509 07685 — 00740 —0-5962  —2-3648 31607 — 0-5468 — 4-8655
— 0-8668 — 0-0740 09520 —0-8996 —2-1231 — 05468 1:7178 —0-8123

03595  —05962 —08996 30084 76908  — 48655 —08123  4.7971

[D] (x 107 N/m)

— 09383 0-3355 0-0267 0-4332 — 09086 0-7243 0-6557 — 2:4704
0-3355 — 0-2587 0-0601 0-1513 0-7243 — 1-:0421 0-1324 1-8607
0-0267 0-0601 0-0157 —0-3995 0-6557 0-1324 — 00820 — 07967
0-4332 01513  —0-3995 03390 — 24704 1-8607  — 0:7967 04332

[Cle, (x 103 N's/m)

0-5395 — 0-0486 — 0-7869 1-6534 0-7059 — 04162 —0-3593 1-0451
— 0-0486 — 0-0042 0-1057 — 0-1442 — 04162 0-3573 — 01905 0-1401
— 0-7869 0-1057 09992 — 20930 —0-3593 — 0-1905 1-4972 — 29555

1-6534 — 01442  —2-0930 40211 1-0451 0-1401  — 2-9555 59626

[D]eq (x 107 N/m)

0-1221 0-0021 — 0-2483 0-5473 0-1998 — 01077 —0-0914 0-2357

0-0021 — 00149 0-0367 — 0-0379 — 01077 0-0700  — 0-0599 0-1488
— 02483 0-0367 0-:3179 — 06850 —0-0914 — 0-0599 0-5224 — 10825

0-5473 — 0-0379 — 0-6850 1-2936 0-2357 0-1488 — 1-0825 2:1212

TABLE 9
Damping matrices identified using wide band (50-800 Hz), phase matched and FRM
conditioned
Beam without a damper Beam with a damper

[C] (x 10° N's/m)

— 4435 4433  —1313 —3273  —35075 02278 08480  —0-5235

4433 — 6299 4269 — 0269 02278 16700 —09352  — 1-8994

— 1313 4269 —539 5293 08480 — 09352 — 04527 41053

—3273  — 0269 5293  — 10638  —0-5235 — 1-8994 41053  —8.7964
[D] (x 107 N/m)

17203 — 16192 03256 15447 155154 — 02711 — 04127 06572
— 16192 23095 — 1-5800 01207 — 02711 —0-3965 02042 0-7000

03256 — 1-5800  2:3361 — 26984 —04127 02042 08626  — 27609

15447 01207 — 2:6984 54880 06572 07000  — 2:7609 58292

[Cleq (x 10° N's/m)

06770 — 03787 — 03454 13174 09957 —05779 —03783 14296
— 03787 05641 — 04263 00898 —05779 04916 — 03285 0-1808
— 03454 — 04263 15462  —27253 —03783 — 03285 21106  — 40989

13174 00898 — 27253 56706 14296 01808  — 40989 85258

[D]., (x 107 N/m)

0:5360 — 04355 — 0:0250 06708 05788 — 02103 —0-1862 05175
— 04355 06275 — 04401 00489 —02103 00494 — 00456 01928
— 00250 — 04401 08953 — 12849 — 01862 — 00456 07417  — 1:6646

0-6708 0-0489 —1-2849 2:6474 0-5175 0-1928  — 1-:6646 3-4803
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a positive purpose. For example, identified damping matrices may be used to inspect the
quality of the assembly of high-precision equipment.

5. SUMMARY AND CONCLUSION

A new algorithm was proposed for the experimental identification of the damping
matrices, which identifies the viscous and structural damping matrices of the equation of
motion of a dynamic system. The new algorithm is very simple, and therefore provides more
accurate and robust results compared to the method previously used [14]. Theoretical
validation of the method and the related noise study were conducted using a 3 d.o.f. lumped
parameter system. A set of measurements were taken, which served as a qualitative,
experimental validation of the procedure. Important measurement techniques necessary for
correct implementation of the proposed method learned from the experiment were also
reported, which included phase matching of FRFs, conditioning of the FRM and the
selection of the frequency range.

The method identifies damping matrices, which carry a lot more information than
damping ratios; therefore it will enable some interesting applications. The following are
considered potentially promising applications.

(1) FEA-experiment hybrid modelling of a dynamic system: the mass and stiffness matrices
are formulated theoretically, and the damping matrices are identified experimentally,
which are then combined to obtain the system model. Because the actual spatial
distribution of the damping is considered in the model, this will provide a more accurate
analysis.

(2) Identified damping matrices may be used as valuable information for design or
inspection. For example, comparison of the spatial distributions of damping of a new
design and an existing design may provide good insights to designers. Because even
a very small change in the system causes a significant change in identified damping
matrices, the matrices may also be used for an inspection purpose.

(3) The method will be very useful if it is extended and applied to modelling of rotor
systems. The ability of the method to distinguish different damping mechanisms will be
very helpful in rotor systems, because different damping mechanisms have different
effects on the system stability.

The accuracy of the identified damping matrices depends almost entirely on the accuracy of
the measured FRFs, especially their phase angles. Therefore, the techniques used to measure
FRFs will be critical to the feasibility of the above applications.
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